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Streszczenie

W pracy sa omawiane modele terminowych stép procentowych Heatha-Jarrowa-
Mortona-Musieli w przestrzeni funkcji catkowalnych z kwadratem i podany jest
dowdd, ze struktura Heatha-Jarrowa-Mortona-Musieli moze by¢ rozwazana
jako rozwiazania réwnania stochastycznego Musieli.

$okok

FORWARD RATES MODELS ON THE SPACE OF SQUARE
INTEGRABLE FUNCTIONS

1 Introduction

The history of modeling forward rates goes back to the paper [8] by Heath,
Jarrow and Morton, who made the assumption that for every T° > 0 the
forward rate process {f(¢t,T) : t € [0,T]} is an It6 process:

t

f(t,T) :f(O,T)+/O a(s,T)ds+/O (b(s,T),dZs),;, (1.1)

where {a(t,T) : t € [0,T]} is an R-valued process and {b(¢t,T") : t € [0,T} is a
U-valued process. Although in [8] U = R? and Z is a d-dimensional Wiener
process, rate models with Z being an infinite dimensional Lévy process seems
to capture more of the relevant features of the markets. The absence of arbi-
trage on the market implies that the following dependence between the coef-
ficients in (1.1) holds (see [3]):

/tT a(t,§)dé =J </tT b(t,f)df) , (1.2)
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where J(u) = InEe~<%Z1>U,
Musiela [9] proposed to define rates in terms of the remaining time to maturity
x =T —t. With

fi(z) = f(t, t + x), at(x) = a(t,t + z), be(x) = b(t,t + ),

(1.1) becomes

ft(sv)—fo(:v—i—t)—&—/o as(:zz—l—t—s)ds—i—/O <bs(x+t—s),dZs>U. (1.3)

For a > 0 let L2 denote the space of all f: R, — R such that

“+o00
1 = [ If@)Pends < 4.

We prove that if a = {as:s € [0,t]} and b = {bs: s € [0,t]} are predictable
integrable L2-valued processes such that for some K (t) > 0, we have [|as]|;2 ,
lbsll 2 < K(t) for all s € [0,t], then f; is a mild solution to the following
equa,t(ilon:

ft = (Aft + at)dt + btdZt, (14)

where Af = f’ (in Theorem 2.4 the result is formulated for an infinite dimen-
sional Lévy process 7).

The difficulties of performing stochastic analysis in L2 were mentioned already
in [5] (see remarks after Example 3.16 therein), where the weighted Sobolev
space H was introduced and proposed as a state space for (1.4).

On the state space H the transition from the original Heath-Jarrow-Morton-
Musiela description (1.3) to the stochastic differential equation (1.4) was a con-
sequence of the boundedness of the point evaluations 7., given by J..f = f(x).
In contrast, the point evaluations 7, on L? fail to be bounded. Various results
regarding Musiela equation (1.4) has been presented for H as well as L2 (see
for instance [1], [2], [6], [7], [10], [11] and [12]), although for L? the first step
(the transition to a stochastic equation) of the research was missing.

Heath, Jarrow and Morton [8] present an example of a model with state de-
pendent coefficient b, namely

b(t,T) = omin{f(t,T),\}, T >0,te[0,T], (1.5)

for some o, A > 0.
Let 7 > 0 and W be a one-dimensional Wiener process. It follows from
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Propositions 4 and 5 of [8] that for an arbitrary initial forward curve 7 such
that n(t) > 0 for all t € [0, 7], there exists a jointly continuous f(¢,7), t €
[0,T], T € [0, 7] which solves

Af(LT) = b(t, T) < /t Tb(t,ac)ds) dt + b(t, T)dW,

£(0,T) = n(T),

and with probability one f(¢,7) > 0 for all T € [0, 7] and ¢ € [0, T].

The above example is discussed further in [5]: when we move to the stochastic
equation setting (1.4) the example does not work in H, but works in L2 (see
Example 3.16 of [5]).

We show that if b; in (1.4) is given by

be(x) = max{fi(z), A(2)}, (1.6)

for some positive \ € LZ and Z is a square integrable Lévy process such that
its jumps are bounded from below by —1, then for every positive € L2, there
exists a unique positive solution to (1.4) with fo = n.

2 Stochastic integral with L2-valued operators

Let U, H be two separable Hilbert spaces. A linear operator A € L(U, H) is
said to belong to the space of Hilbert-Schmidt operators, denoted by £2(U, H),
if

+oo
2 2
Al 2,y = Z [ Aeill7 < +oo,
i=1

where {e;}; is an orthonormal basis in U.
Let L?(Y,u, U) denote the Hilbert space of all functions f : Y — U such that

+o00
/0 1 W)I13 1(dy) < +oo,

with the standard inner product

9 2v ) —/Y<f(y),g(y)>Uﬂ(dy)-

It is clear that every v € L?(Y, i, U) defines a Hilbert-Schmidt operator from
U into L*(Y, 1, R) by (Au)(y) = (v(y),u);. The lemma below ensures that
every A € L2(U, L?(Y, 1, R)) admits such representation. The lemma can be
found in [14] (see Theorem 6.12 therein).
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Lemma 2.1. If A € £2(U, L?(Y, u,R)), then there exists v € L*(Y, u, U) such
that for almost every y € Y

(Au)(y) = (v(y), w)y -

Furthermore,
1Al 2 p2(vpm)) = 17l z20v: 00y -

From the above lemma, for every A € £L*(U, L*(Y, u,R)), mapping J, o A :
U — R is a bounded linear functional for almost every y € Y. By A*J, we
shall denote the unique element of U such that

Jy(Au) = <A*jy,u>U.

Theorem 2.2. Suppose M is a U-valued martingale and ¥ = {¥y : s € [0,t]}
is a predictable integrable £*(U, L?(Y, u,R))-valued process such that

1Wsll 2,2 (v pury) < K(t) for all s €0,¢] and some K(t) >0,
Then for almost every y € Y,

(/Ot q/SdMS> (y) = /01t (U2 J,, dM,),,

Proof of Theorem 2.2. From the definition of the stochastic integral there ex-
ists a sequence of elementary processes ({®”:s € [0,t]})nen such that the
sequence || Vs(w) — @Y (w)l|12(y,, r) decreases to 0, for all w € 2, s € [0,¢], and

t
E /0 19, = B vy b5 — 0. (2.1)

It follows from Lemma 2.1 that the conclusion of the theorem holds for any
elementary process, hence we only need to show that

L8| [ wwan, - [ erwan,

where (7 (y),u); = (PFu)(y) and (¥s(y),u); = (¥su)(y). The existence of
o7, s follows from Lemma 2.1. It is enough to prove that

ro= [ (& [ 1) = 1)1 as) i) —

and from Fubini’s theorem for o-finite measures, we get

2 = E /0 /Y la(w) — @)% u(dy)ds.

But from Lemma 2.1 ||¢)s — gp?HLQ(Y%U) = || U — (I)?HEQ(U,LQ(YMIMR))’ s0 T, — 0
by (2.1). O

2
p(dy) — 0,

138



Modele terminowych stép procentowych w przestrzeni funkecji...

Following the proof of Theorem 2.2 but using Bochner integral definition in-
stead of stochastic integral definition we get the following lemma.

Lemma 2.3. If ¢ = {¢s:s€[0,t]} is a predictable integrable L*(Y, u,U)-
valued process such that

&5/l p2y,0) < K(t)  for all s €0,¢] and some K(t) > 0,

Then for almost every y € Y,

([ 6s) = [ outwas

The following result is a direct consequence of Theorem 2.2 and Lemma 2.3.

Theorem 2.4. Let t > 0. Suppose fo € L2, a = {as: s €[0,t]} is a pre-
dictable integrable L% -valued process and b = {bs : s € [0,t]} is a predictable
integrable L2 (U)-valued process. Assume that

lasllpz < K(t), |bsllpz ) < K(¢) for all s €[0,7] and some K(t) >0,
(2.2)

Let f; : Ry — R be given by (1.3) and let fi : R, — R be given by

t

t
fi =S)fo +/0 S(t — s)asds +/0 S(t — s)BsdZs,

where (Byu)(z) = (by(x),wu, z,t > 0, u € U and (S(t)f)(z) = f(z + 1),
x,t > 0. Then for almost every (w,z) € Q x Ry, we have

fi(z) = fi(x).

3 Short rate

In financial applications the concept of the so-called short rate, given by r; =
f1(0), plays an important role. For instance, in proofs regarding the absence
of arbitrage in the market, it is often shown that the process of discounted

bond prices {ﬁ(t,T) ‘te [O,T]} given by

Pty = ([ f0as) e (= [ iwrar).

is a local martingale. Although f.(0) may not exists for f, € L2

[e'R]

result ensures that the process {fot fs(0)ds : t € [0, T]} is well-defined.

our next
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Proposition 3.1. Let t > 0. Suppose fo € L2, a = {as:s€[0,t]} is a
predictable integrable L2 -valued process and b = {bs : s € [0,t]} is a predictable
integrable L2 (U)-valued process. Assume that the condition (2.2) holds. Let
fi : Ry — R be given by (1.3). Then for every x > 0 the integral

/Ot fs(x)ds

is well-defined. In particular, the short rate rs = fs(0) is well-defined for
almost every s € [0, t].

Proof of Proposition 3.1. 1t is clear that g, s : Ry — R, ¢ : Ry — U, given
by
r+t—s

T4+t—s z+t—s
o(z) = / Jo(€)de,  pula) = / a(E)dE,  dula) = / ba(€)de.

are continuous functions. In fact, they are Lipschitz continuos. Indeed, from
the Holder inequality and the Lagrange mean value theorem, if f € L2,
y > x >0, then

(/f Iy
HM%

x—yl

Hence, by (2.2), for all s € [0, ]

l9(z) — g(y)| < —2=

_y|7
oal) — esl)] < 20 ja )
60() — a(0)] < ey,

Note that the Lipschitz constant of ¢ and ¢, does not depend on s, hence for
every z > 0, f(f (¢ps(),dZs),; can be defined as a L?(£2) limit of fg (ps(xn),dZs)
for some sequence x,, — x.

The Holder inequality will also imply that

I £llz < a7 |1 £l (3.1)
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Hence, by (2.2), we get

r+t—s
// las(€ |d§ds</ laollyz a~¥ds < tK (a3,

—

and

t r+t—s t
B[ Il des < [y ds < o)

Applying Fubini’s theorem for o-finite measures to the function g(s,v) =
as(x + v — s) and the stochastic Fubini’s theorem (see [13]) to the process
O (s,v)u = (bs(x +v — s),u);;, we obtain

/fv dv—/f0x+vdv+//asx+vs)dsdv
// s(t+v—s),dZg), dv

— g(2) + /0 pa(x)ds + /0 (6a(2), dZe)y

4 State dependent coefficients

Let Z be an R-valued square integrable Lévy process and let by = G(f;), for
some G : L2 — L2. Then (1.4) reads as

fe=(Afe + F(fe))dt + G(fr)dZ, (4.1)
with F: L2 — L2 given by
F(f)(x) =S(G(f))(x),
where S : L2 — L2 is the so-called HJM mapping,

st =7 ( [ heie) nio).

The dependence between G and F' is a consequence of (1.2).

We wish to discuss the positivity of solutions to the equation (4.1) with the
coeficient G(f)(z) = min{f(x),A\(x)} (this is in fact the example from the
Introduction, where coefficient {b; : t > 0} is given by (1.6)). We collect a few
existing results regarding Musiela’s equation (4.1). First we restate Lemma 4.4
and Theorem 3.7 of [10].
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Lemma 4.1. Assume that f, g € L? are positive functions, || f| 2, llgll 2 < M
and || fl|g1, llgllpr < R. Then

1
IS(f) = 8@z < (J'(R) + max{E|Z1*, J"(R)}a" 2 M) || f = gll 2 -
Lemma 4.2. Assume G : L2 — L% in (4.1) is given by

G(f)(z) = min{[f(2)], A=)},

for some positive A € L. If J"(|[A|| ;1) < 400, then for every n € L2, there
ezists a unique solution (fi)i>o to (4.1) with fo =n.

Next, let v be the Lévy measure of Z, i.e.

v =E| Y 1r(zt)-2(t)) ],

0<t<1

where Z(t7) = lim Z(s), I is a Borel subset of U such that T' C U \ {0}, and
s—t—
v ({0}) = 0. It is well-known that

/ min{1,y?}r(dy) < 4oo.
U

The support of an R-valued Lévy process Z with the Lévy measure v is defined
as
Sz={2z€R:Ve>0 v([z—e,2z+¢])>0}.

The function J” can be written in terms of v as

+o00
J'(z2) = / y2e Hu(dy).

—00

Note that if Sy € [-1,+00) , then

“+00 1 “+o0
J"(2) z/ yre *Vu(dy) Se'z'/lzﬂ/(dy)Jr/1 yu(dy).

-1

We conclude that
Sz € [-1,4x) = |J'(2)| <400, Vz>0. (4.2)

The following result can be found in [1] (see Section 4 therein).
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Lemma 4.3. Assume G : L2 — L2 in (4.1) is given by

G(f)(x) = g(z, f(x)),

for some g : Ry x R — R. The following conditions ensures the positivity of
solutions to (4.1),

g(x,0) =0, y+ g(z,y)u >0, Vr,y >0, Yue€Syz. (4.3)

Now, let Z be square integrable with Sz € [—1,4+00) and let G(f)(z) =
min{ f(z), \(z)} for a positive A € L2. First note that for g : Ry x R — R
given by g(z,y) = min{y, A(z)} condition (4.3) is fullfiled, hence by Lemma 4.2
and (4.2) for any positive n € L?l there exists a unique positive solution to
(4.1). Further if f,g € L2 are positive, so is G(f) and G(g). Further for all

f.g €Ly,
IG(f) =Gz <N =gllz,  N1GNNLz <Az
and from (3.1),
_1
1G(Apr < a2 Mgz -

Hence by Lemma 4.1

_1
1E(f) = F(9)llpg < 2Ca™2 [[Alpz If = gllzz

since J'(r) < Cr, r > 0, from the Lagrange mean value theorem. The La-
grange mean value theorem implies also that |F'(f)(z)| < C'||G(f)| ;1 |G(f)(z)],
hence .

IE(f)]l 2 < Ca% A2 -

Therefore the assumptions of Theorem 2.4 are satisfied for a; = F(f;) and
by = G(ft). The predictability of {a; : ¢ > 0} and {b; : t > 0} follows from
the Lipschitz continuity of F' and G, the strong continuity of the semigroup S
and the predictability of {f; : t > 0}.
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